Software Verification
on the ASIP CAD Example

How to Trust Your Team and Yourself?

Ph.D. Aleksandr Penskoi, ITMO University, Russia, 29.05.2021

About myself

* Graduate at ITMO University

« 2016 — Ph.D. — Research and Development Architectural Style
for Design Multi-Level Embedded Systems

* Associate Professor
« 2017 — At Software Engineering and Computer Systems Faculty, ITMO University
e 2020 — At ITMO University and Hangzhou Dianzi University Joint Institute

« 2010 — 2017 — Software Engineer at LMT Ltd. (Embedded systems design center)

e 2017 — 2020 — Architect & Senior Developer
at National Center for Cognitive Research

* NITTA Project founder

[=]

ryukzak.github.io

Agenda

Practices for continues quality control in NITTA project

l. Quality in Software System — question overview
Il. The ASIP CAD Example — NITTA project overview
lll. Development Process — development process overview

IV. Verification Methods — review of applied non widespread practices

Quality in Software System

Quality Concept in Software System

* Traditional engineering
e “Quality is a conformance to requirements” — Philip Crossby
* The system of quality is prevention
* The performance standard is zero defects (relative to requirements)
 The measurement of quality is the price of nonconformance
* |n software engineering
e “Quality is a value to some person” — Gerald Weinberg
* Requirement engineering is a development process part

 Tradeoffs between different stakeholders

Elements of Quality Software

* Product vision (understanding stakeholders and their needs, requirements)

* Project management (understanding priorities, processes, reaction to
unexpected situation)

 Routine development processes (bureaucracy, regulation, automatization,
continuous quality control, automatization)

* Acceptance tests (end-user testing to bring system onto utilization stage)

Cost, Time, and Quality
Tradeoff

* Business needs (time, budget)
are Immediate shows stopper.

 Bad quality with bad
management Is not a show
stopper due to the end of the
project.

 Can we make absolute quality if
we have infinite time and

budget?

/\

https://medium.com/@vivekmadurai/quality-time-and-money-39278f990092

Quality Control

Key prOCeSSGS analyse stakeholder acceptance

needs into operation
validation

» Validation — checking system

accordance to stakeholders’ verification
needs architectural integration
design

* Verification — checking the

system for compliance with a

formalized requirements work design oroduction

o Static verification (without

exeCUtlon’ general propertles) definition realization operation

 Dynamic verification (with
execution, specific data)

The ASIP CAD Example
NITTA Project

NITTA Project

As a Research Pet Project

* |t is the ongoing project Research and University means:
* |t will be published on Github in the middle Main goals: articles, conferences,

of 2021 under the BSD license bachelor/master/Ph.D. students
* Pet means: * Abllities pay extra attention to a narrow

question
e Just for Fun, the commercial outcome is
not a priority at present * Open requirement lists (at present)
* Abillities to ignore many commercial * The team mostly consist of students:

project restrictions | | |
* Not a professional, require mentoring
* Non-regular contributions and reviewing

 Not deadline Require fast feedback loop

10

NITTA Project

As a Product

* NITTA project is dedicated to developing the CAD for generating and programming hard real-time
Application-Specific Processors with Coarse-Grained Reconfigurable Array Architecture for cyclic
execution of control or signal/data processing algorithms. Application:

* Development of embedded and cyber-physical systems
 Hardware and software testing and rapid prototyping (HIL, PIL)
* Development of accelerators and coprocessors (e.g., for System Dynamic)

* These processors are based on the original Not Instruction Transport Triggered Architecture (NITTA).
|t provides high speed and parallel execution of irregular algorithms (where GPU is not applicable).
* |t makes reconfigurable processors for different application domains.

* |t provides a high-level language for application developers and fast compilation (Lua, XMILE).

11

NITTA Project
User Work Flow

S
<
S
\&

Microarchitecture
S S Introspection Ul

Process Unit Library

* Application algorithm — algorithm on high-level
programming language

 Process Unit — element of processor, which
performs data processing, storing, and |O. v

Synthesis by NITTA CAD
External FPGA Design Software

Hardware Software Controller
 FPGA (field-programmable gate array) — cheap -
custom hardware (board + preparing time) FPGA

 Microarchitecture — composition of process
units, buses, interconnect

* |Introspection Ul — user interface for analysis
and control over synthesis process.

 External FPGA Design Software — tool
synthesis FPGA configuration from hardware
description language (Quartus right now)

System on a Chip

12

NITTA Project =
Development Stack -

NITTA CAD

3 Introspection Ul m

1. Haskell — CAD itself [
Y ! 'c% |

1 1 5=

FPGA, Verilog — hardware 5 I Héég 33

— / 4 >} 5 1

..

Process Unit Library

payt of

Python — ML based Synthesis — N \

Rust — control software (in > \ D ML L Sohvare

future)
_

System on a Chip

2
3. Typescript + React — U
4
5

13

NITTA Project

Key Difficulties

* The extreme learning curve of the subject
* The hard learning curve for tools

» Strongly linked software components with
continues changing specification

* Gaps between different technologies (User
interface — CAD, Hardware — Models):

* |ntegration issues

 Misunderstanding between different
developers

* A lot of boilerplate code

» |Late integration

3 Introspection Ul

|
Microarchitecture

| N

Application

algorithm

NITTA CAD

Hardware
implementatior

14

Transpilers

System on a Ch|v -

|
- |
B |

e
< |

(O]
; = |
Target System Model J<——>] Synthesis Methodg: y @ |

i L
Sl c |

>
4 ! NN
'----'

|| » Processor unit
. models
5 |
| confiqure » Controller
re eneration » Software

Development Process

Development Process

Practices
* Weekly meeting * Continues Integration
 Dynamic development process e Source code auto-format
management
® H_Wa”!!
* Preventing sticking
e |Lint-tools

* EXperience exchange
* Unit and integration tests
 Code Review by GitHub by mentor
and team member Automatic documentation
generation

16

Verification methods

Test by Interactive Example

* Problems:
* Project documentation
» Keeping the documentation up to date
* Context related documentation to reduce the learning curve

e Solution: a doctest like testing approach (heavy spread in Python community)

18

Test by Interactive Example

def factorial(n):
"""Return the factorial of n, an exact integer >= 0.

doctest as an alternative to unittest

“The doctest module searches for pieces of
text that look like interactive Python sessions,
and then executes those sessions to verify
that they work exactly as shown.”

Represented in some other development
tools, e.qg., C++, Haskell, Elixir, EIm, Rust

It can be simple implemented in all languages
with REPL

Usage of integrated with documentation tests
force to make documentation up to date

Restriction: simple lifecycle, a small amount
of input/output data

19

>>> [factorial(n) for n in range(6)]
(1, 1, 2, 6, 24, 120]

>>> factorial(30)
265252859812191058636308480000000
>>> factorial(-1)

Traceback (most recent call last):

ValueError: n must be >= 0

import math
1f not n >= 0:

raise ValueError("n must be >= 0")
if math.floor(n) '= n:

raise ValueError("n must be exact integer")
1f n+l == n:

raise OverflowError("n too large")
result =1
factor = 2
while factor <= n:

result x= factor

factor += 1
return result

Python, Development Tools Documentation

End-to-End Static Typing

Problem statement

o Static typing is one of the best static invariant checkers for software with the
appropriate cost.

* The initial choice of the development tool (Haskell) is justified by a powerful
type system, which significantly simplifies control over project consistency.

* A heterogeneous system architecture (most of the complex software system)
have gapped between different technologies.

 How to establish a typed interface between two statically typed components:
CAD (Haskell) and Ul (Typescript)?

20

End-to-End Static Typing

Avalilable options:

 Manual implementation in accordance with API specification:
 Require a lot of documentation work
* Require tests for API verification with high coverage
* Any change requires work on both side
* Full control and less artificial restrictions on both side
* A lot of boilerplate code
» Use static-typed language-neutral mechanism for serializing structured data, e.g., protocol buffer, ASN.1
* Require formal specification of a transferred object and third party software for code generation or marshaling
* Both sides were restricted by the serializing mechanism on conceptual and implementation level

* A gap between transport and application levels

21

End-to-End Static Typing

Solution: server-driven code generation

* Applicable only in case if one component is derived from another: * Our solution:
* Client-driven — generation server-side software on access * Third-party libraries: servant, servant-server, servant-js,
patterns (see: backend as a service) servant-docs, aeson, aeson-typescript
* Preferable for developing mobile application with simple * Flow:

data storage

* Server-driven — generation access library based on exposed
API (our case, Ul is derived from CAD). :

* |t is preferable due to the possibility of multiple clients
* Automatic APl documentation generation
* Consistency check on the type-level

* Heavily restricted by used tools

22

Native Haskell data types (part of the CAD)

Utility Haskell data types for infinite and redundant data

types (manual)

JSON serialization (auto)

A set of generic typescript types (auto)

Marshaling between Haskell and H

Server API for JS on Axios (auto)

P API (auto)

Mapping server APl from JS to TypeScript (manual)

Domain Specific Language for Tests

Problem Statement

* Writing tests for units with complex input data, output data, and life-cycle
requires a lot of boilerplate code

* That requires a lot of time for writing, reading, and maintaining tests

* A huge gap between application domain and technical implementation details
are presented

* Jests tend to be not observable. Programmers can extract some parts of
essential data from the test

» Jests tend to be not traceable and debug-able

23

Domain-Specific Language for Test

Solution: Application Level Domain-Specific Language

* Behavior-Driven Development (BDD), focuses:
 Where to start in the process
* What to test and what not to test
* How much to test in one go
* What to call the tests
* How to understand why a test fails
* [embedded] Domain-Specific Language
* More application-specific solution

* The simpler learning curve in comparison with
BDD, but not portable

* Allow writing tests with partial code reuse options.

Feature: Eating too many cucumbers may not be good for you
Eating too much of anything may not be good for you.

Scenario: Eating a few is no problem
Given Alice 1is hungry

When she eats 3 cucumbers
Then she will be full

https://cucumber.io

puUnitTestCase "multiplier test" pu $ do 1. Created test case for provided P
assign $ multiply "a" "b" ["c", "d"] 2. Bind '‘a x b =cC
setValue "a" 2 Set initial input values
setValue "b" 7 for further CoSimulation

decideAt 1 2 $ consume "a" 3. Bind input variable "a" from 1 to 2 tick
decide $ consume "b" Bind input variable "b" at

decideAt 5 5 $ provide ["c"] Bind output variable "c" at !
decide $ provide ["d"] Bind output variable "d"

traceProcess

assertSynthesisDone 4. Check that all decisions are made
assertCoSimulation Run CoSimulation for current PU

from NITTA Project

24

Property-Based Testing and CoSimulation

Problem Statement

 Development tools have a very complex and heavy variety of input data

* Any processor unit is two machines (hardware implementation and CAD model) that should be
consistent to each other with:

* Multiple supported functions

e Own instruction set

 Possible concurrent function execution
 Possible internal resources

* |Late integration: to check the correctness of CAD, process unit hardware implementation, and its
model, we need to produce and run the target system.

 How to prepare enough amount of test cases?

25

tL Algoritt l 1
5 ONLNMm aQenerator
Processor 9 4 :

Property-Based lesting e s

Options and Solution | ik i B

v Y v

Random E
syulhgsns | Synthesis process and source code g.cncmtlun Eunctional Simulation
. _ _ decision (use CAD model of process unit)
» Certified programming as a static way to check generator
- R S S .
general system' properties - o I
* Property-Based Testing (PBT) as a dynamic verification Property: Target system project |
thod synthesis < { - software (*.dump)
metnoa. completeness - hardware (*.v)
o . . \ Y, - s
 The main idea: if we can not prove properties for a (' | \
general case, we can do it for a large amount of N— N\
autogenerated data. e
« Key task: define general unit properties. E.g., , Y

Logical Simulation

e list = reverse(reverse(list)) |

| N
¢ (a + b) + C = a + (b + C) [rTOPEIRY: } ‘ Simulation report =

coSimulation

* All algorithm' function should be scheduled for
execution.

* Results of functional and logical simulation should More details in the article:

eq Ual Verification of the CAD System for an Application-
Specific Processor by Property-Based Testing

26

Tests for Tests

 Complex test utilities can contain errors
themselves.

 Worst case: tests passed, but tests are not
actually check anything and create a false
sense of trust.

* Without continuously checking, we can miss
the moment when test utilities have been
broken.

e Solution:

 Embedded special components into the
project to imitate common error types and
catch them by routine automated tests.

aod 3 yoeab

27

HAVING A GREEN
HUDSON/JENKINS ...

DIDN'T
KNOW IT CAN
CHANGE ITS

COLOR

... A GREAT EXPERIENCE

Conclusion

e Automatization can be used to replace and form a development culture.
 Merging documentation and unit tests in a literate style can improve both.

 End-to-end static typing across different technologies can be implemented by code
generation. It reduces the amount of glue boilerplate code.

* Application of [embedded] Domain-Specific Languages can significantly reduce the
complexity and NLoC of your tests.

 Property-Based Testing can significantly increase test coverage for a complex
algorithm without writing many test cases if you can define even simple properties.

e |t is not acceptable to trust your tests if they're not deadly simple.

28

[=]

Thank you! 0}
s
=]
ryukzak.github.io

Ph.D. Aleksandr Penskoi, ITMO University, Russia

29

