The Selection Problem and Evaluating Method
for Architectural Design Tools
of Computer Systems

Aleksandr Penskoi
Faculty of Software Engineering and Computer Systems
ITMO University, Saint-Petersburg, Russia
aleksandr.penskoi@gmail.com

.
ooooo

* ?-;-:'f ITMO UNIVERSITY

Architectural Design Tools

Architecture (of a system) — fundamental concepts or
properties of a system in its environment embodied in its
elements, relationships, and in the principles of its design
and evolution

ISO/IEC/IEEE 42010:2011
Systems and software engineering -- Architecture description

Software architecture is the set of design decisions

which, if made incorrectly, may cause your project to be
cancelled

Eoin Woods (Software Architect, Investment Bank, London, UK),
http://www.sei.cmu.edu/architecture/start/glossary/community.cfm

Examples of architectural design tools: architectural styles,
architectural description languages, development and
system analyzing methods, models of computations,
programming styles, paradigms and languages, etc.

2

SIMPLY EXPLAINED

SOMETHING
y

[ek,

Lo

>
e . i
V
GREAT
SOFTWARE

geek & poke

N

DEVELOPMENT PROCESS

Problem statement

Example of reaction to a new architecture level design tool:

| can resolve the task without it, why | should spend time on learning?
 Why do you consider your way of thinking is better than mine?

e Can you prove it by quantification of the effect?

How to compare architectural level design tools
of the same type for a particular class of tasks?

Outline:

 Examples: OMG Essence, System Engineering, OOP vs FP, and practical
design problem.

» Features and Problems of Architectural Design Tools Comparing.
 Comparative analysis based on criteria with partially ordered estimates.

3

Why it is so important?

* Wrong tools can significantly increase the
project budget and fail it.

« How we can move from “computer system
developing” to “computer system
engineering” with:

* Predictable budget and duration?
* Predictable system properties?

* Reproducible results?

« How can we write papers on such important
things?

U
A \~3‘93‘l':

T

" <
’

-
Chig e

T

l' ‘
U]

4

He xo4y BMAETb HUKAKUX CymacLuegLlumx Toprosues —
Tbl YTO, HE BUAULWb, YTO TYT BuTBa UAET!

NcTtoyHuk: FIATECH

Why it is so hard?

THE SEVEN STRATEGIES OF PROJECT

MANAGEMENT
* Business sl
BOARD OF THE
* Human Resources ce— COMPANY ABOUT OLR
H HAVE YOU
* Risks DECIDED?

* Time to market

Formulated part of O
the task %

Reputation, Management, Team
* Real reasons
* Real goals

L 1 -~
Personal bias and fashion o Statement of the task ™ /Lf 7,\
%anager ' [

Very complex technical trade-offs /VHW Developer

~. VY SW Developer

THAT WE WILL FINISH

THE PROJECT IN TIME

AND BUDGET AND WE
WILL MEET ALL
REQUIREMENTS.

(/). -.\\)

We will speak about the last one.

| (

STRATEGY 1:
5 HOPE

Example #1: OMG Essence
How to select software development methodology?

Ivar Jacobson is a computer scientist and software Methods
engineer, known as major contributor to UML,
Objectory, Rational Unified Process, aspect-oriented | Practices

software development and Essence.

The Kernel
* In the 80s the problem was formulated: industry

need a methodology for software development. SRR T i

* In 2009 the Software Engineering Method and
Theory (SEMAT) initiative was launched.

o
46\/ -
Opportunity X

5

r
A

Customer

ovide
8,

* |n 2014 the first version of Essence standard was
published (280 pages).

S,

» Today, OMG Essence (the common ground for
defining software development practices) is the
basis of many courses on software engineering
methodology.

Solution
tup to add
el
< SUI {[u}a] @©
[3 |
ue §3doa. = <sasng
@
E
:
W (%]
Q8
uodd

Endeavour

[. Jacobson, “Technical Trends Discover the Essence of
Software Engineering,” CSI Commun., pp. 12-14, Jul. 2011. 6

-

The Method Architecture

The Kernel Alphas

Example #2: System Engineering
Is it applicable for Software-Intensive Systems?
I

i
u LIS
i

System Engineering (SE) is an interdisciplinary approach
and means to enable the realization of successful systems. It
focuses on ... evolving solutions while considering the
complete problem, from system concept exploration through

system disposal.
The Guide to the Systems Engineering Body of Knowledge (SEBoK), V. 1.3.

Some quantitative results for software-intensive systems:

* 161 software projects in the COCOMO || database
collected over a 25-year period.

» Conclusion: SE practice allow to reducing risk of cost

overrun and schedule overrun.

Boehm, B., Valerdi, R., & Honour, E. (2008). The ROI of systems engineering: Some
quantitative results for software-intensive systems. Syst. Eng., 11(3), 221-234. https://
doi.org/10.1002/sys.v11:3

Actual/Planned Cost

7 SE Effort = SE Quality * SE Cost/Actual Cost

Example #3: Object-oriented programming

Teaching Object Orientation

Object-oriented programming is an exceptionally bad idea which could —
only have originated in California #
(c) Edgar Dijkstra

OOP has many conceptual and practical issues, but heavy wide speared.
Partridge, C (1996). Business Objects: Re-Engineering for Re-Use, Butterworth Heinemann, 1996

We don’t have the benefits of OOP over procedural programming.

Potok, T. E., Vouk, M., & Rindos, A. (1999). Productivity analysis of object-oriented software
developed in a commercial environment. Software: Practice and Experience, 29(10), 833-847.

aod g oab

Current trends in programming languages:
* add functional style features;
* reducing mutable state;
* avoid inheritance.

C++, Java, Go, Rust A DATE?

OOP is hard to use properly.

Sierra, Kathy, and Bert Bates. Head First Java: A Brain-Friendly Guide. O'Reilly Media, Inc., 2005.
Fowler, M. Refactoring: improving the design of existing code. Addison-Wesley, 2018.

8 Today: java.util.Date

Example #4: Design Real-Time ASIP
with Complex Multi-Level Organisation

Design flow

NITTA project is a hard real-time ASIP with the foplteon oomm

hybrid No Instruction Set Computing - Transport } ! —

Triggered Architecture (NISC-TTA) architecture. A computational 3| | [L_generation

target system includes: process sichedu"ng % — geieraﬁon

* a synthesizable HDL project with specialized nano-coded software S —

. . generation » Logic synthesis
processor units (from the standard library and/or !
user-defined), interconnect infrastructure and / Targetiystem /
distributed control units;

* a nano-coded software, which defines system o " pedon Algrthi & Caittrol Fici & Dita Flow
behavior according to an application model/ / models
algorithm and, if it applies, specification of system B Sy |
interaction protocol. o i ° Bind Declsion Decision

_ _ maker | - Network Select Net 4" Endpoint | PU

Synthesis method based on the transport-oriented M DScision model || Decision | modd

model of the target processor, which can represent \° o

all possible system behaviors for CAD. | Data flow Decision

9

Synthesis method architecture

Problems of Architectural Design Tools Comparing

Ground
Transportation
System

Low formalization of design space of problem. Different
tasks required different questions, viewpoints, and
granularity level.

Air Transport System

Low formalization of compared tools. Usually, a common
ground for comparing different tools is not allowed.

Dependency between tool selection and consequences
(after architectural design and implementation). The human
factor.

Maritime
Transport
System

Global positioning
receiver system

Problems of experimental evaluation:

Task selection for an experiment.

Experiment organization.

High influence of the human factor.

el

ISO 81346

Existed industrial experience usually not accessible.

10 Product aspect

ISO 15288

Comparative analysis based on criteria with
partially ordered estimates

Example: comparing architectural styles for design
and documenting multi-level embedded systems.

Method steps:

1. Definition of criteria with partially ordered
estimates. Criteria can be objective or
subjective and should be represented as axis
on radial diagrams.

2. Evaluation of compared objects. Estimate
doesn't need to be normalized for single or
multiple criteria, all that needed is order and
equality relationship.

3. Reduction of the number of compared objects
by removing duplicates and poor options.

4. Comparative analysis. Finding proper use-
cases for available tradeoffs or challenges for
creating new tools.

11

Design space
Step #1 coverage
Platform features Abstractions
representation compliance
Representation of
method. aspect Redundancy
Reconfiguration .
representation Complexity
Step #2 Design space
Step #3 coverage
Platform features Abstractions
representation compliance
Representation of
method. aspect Redundancy
Reconfiguration .
representation Complexity

Step #4 on the next slide

Conclusion:

« Some of the existed examples of architectural design
tools comparing reviewed.

Problems of architectural design tools comparing are
analyzed.

Proposed the method of comparative analysis of
architectural design tools based on criteria with
partially ordered estimates with the following
properties:

* the analytical method based on explicit and
traceable expert estimates;

* support of "black-box" and "white-box" analyzing;

* method oriented to highlight differences, not to
obtain the single best solution;

* method provides the means for interpreting the
results in different application cases.

12

Domain diagrams

AADL

== Deployment style
Layer diagrams
e A ctualization graph

Model-Process-Computer

Step #4 Design space
coverage
li"lezttlflorren; Abstractions
: compliance
representation
Representation
of method. Redundancy

aspect

Reconfiguratio Complexity

representation

Thank you!

aleksandr.penskoi@gmail.com

13

