
The Selection Problem and Evaluating Method
for Architectural Design Tools

of Computer Systems

Aleksandr Penskoi

Faculty of Software Engineering and Computer Systems  

ITMO University, Saint-Petersburg, Russia

aleksandr.penskoi@gmail.com

17

Вертикальную компоновку используйте
в случаях, когда логотип является основным
композиционным элементом макета.
Сама композиция имеет симметричный
характер, поэтому требует достаточно
много свободного пространства вокруг себя.

Горизонтальная версия более компактная,
ее композиция имеет асимметричный характер,
она не требует так много свободного пространства
вокруг.

Инвертированный одноцветный вариантОдноцветная английская версия
Этот вариант логотипа используйте, когда цветная
печать невозможна. Например, на бланке для факса,
в газете и так далее.

Логотип

Architectural Design Tools
Architecture (of a system) — fundamental concepts or
properties of a system in its environment embodied in its
elements, relationships, and in the principles of its design
and evolution

ISO/IEC/IEEE 42010:2011

Systems and software engineering -- Architecture description

Software architecture is the set of design decisions
which, if made incorrectly, may cause your project to be
cancelled

Eoin Woods (Software Architect, Investment Bank, London, UK),

http://www.sei.cmu.edu/architecture/start/glossary/community.cfm

Examples of architectural design tools: architectural styles,
architectural description languages, development and
system analyzing methods, models of computations,
programming styles, paradigms and languages, etc.

2

Problem statement
Example of reaction to a new architecture level design tool:

• I can resolve the task without it, why I should spend time on learning?

• Why do you consider your way of thinking is better than mine?

• Can you prove it by quantification of the effect?

How to compare architectural level design tools  
of the same type for a particular class of tasks?

Outline:

• Examples: OMG Essence, System Engineering, OOP vs FP, and practical

design problem.

• Features and Problems of Architectural Design Tools Comparing.

• Comparative analysis based on criteria with partially ordered estimates.

3

Why it is so important?
• Wrong tools can significantly increase the

project budget and fail it.

• How we can move from “computer system
developing” to “computer system
engineering” with:

• Predictable budget and duration?

• Predictable system properties?

• Reproducible results?

• How can we write papers on such important
things?

4

Why it is so hard?
• Business

• Human Resources

• Risks

• Time to market

• Reputation, Management, Team

• Real reasons

• Real goals

• Personal bias and fashion

• Very complex technical trade-offs

We will speak about the last one.

5

Example #1: OMG Essence
How to select software development methodology?

Ivar Jacobson is a computer scientist and software
engineer, known as major contributor to UML,
Objectory, Rational Unified Process, aspect-oriented
software development and Essence.

• In the 80s the problem was formulated: industry
need a methodology for software development.

• In 2009 the Software Engineering Method and
Theory (SEMAT) initiative was launched.

• In 2014 the first version of Essence standard was
published (280 pages).

• Today, OMG Essence (the common ground for
defining software development practices) is the
basis of many courses on software engineering
methodology.

6
I. Jacobson, “Technical Trends Discover the Essence of

Software Engineering,” CSI Commun., pp. 12–14, Jul. 2011.

7.3 The Method Architecture
The domain of the Essence specification is software engineering, and in particular software engineering
methods. It uses the simple layered architecture shown in Figure 1, where a method is a simple composition of
practices, practices which are described using both the Essence Kernel and the Essence Language. It is the use
of both the kernel and the language that allows a practice to be safely merged with other relevant practices to
form a “higher-level” method.

Figure 1 – Method architecture

The key concepts include:

x A method is a composition of practices. Methods are not just descriptions for developers to read, they are
dynamic, supporting their day-to-day activities. This changes the conventional definition of a method. A
method is not just a description of what is expected to be done, but a description of what is actually done.

x A practice is a repeatable approach to doing something with a specific objective in mind. A practice
provides a systematic and verifiable way of addressing a particular aspect of the work at hand. A Practice
can be part of many methods.

x The Essence Kernel captures the essential elements of software engineering, those that are integral to all
software engineering methods. Note: other kernels for other domains could be defined using the Essence
Language but these are outside the scope of this specification.

x The Essence Language is the domain-specific language to define methods, practices and kernels.

7.4 Why a Kernel and a Language?
The successful development of software systems benefits from the application of effective methods and well-
defined practices. Traditionally, methods have been defined up-front before a team starts to work. They are then
instantiated so that the activities – created from the definition – are ready to be executed by practitioners (e.g.,
analysts, developers, testers, project leads) in a predefined order to get the result specified by the definition.
Methods defined in this way are often considered by development teams to be too prescriptive, heavyweight and
inflexible. The view – “the team is the computer, the process is the program” – is not suitable for creative work
like software engineering, which is agile, trial-and-error based and collaboration intensive.

What has been missing is a simple way to boot-strap a method, one that allows a team to experiment and evolve
a way of working that meets their needs whilst they do their work. A living method that they can continuously
inspect and adapt so that it learns as they learn and reflects what the team is actually doing rather than what the
team thought they would be doing before they started work. A living method where the set of practices the team

Essence 1.0 Beta 2 9

Th
e

M
et

ho
d

Ar
ch

ite
ct

ur
e

Th
e

Ke
rn

el
 A

lp
ha

s

Example #2: System Engineering
Is it applicable for Software-Intensive Systems?

System Engineering (SE) is an interdisciplinary approach
and means to enable the realization of successful systems. It
focuses on ... evolving solutions while considering the
complete problem, from system concept exploration through
system disposal.

The Guide to the Systems Engineering Body of Knowledge (SEBoK), V. 1.3.

Some quantitative results for software-intensive systems:

• 161 software projects in the COCOMO II database

collected over a 25-year period.

• Conclusion: SE practice allow to reducing risk of cost

overrun and schedule overrun.

Boehm, B., Valerdi, R., & Honour, E. (2008). The ROI of systems engineering: Some

quantitative results for software-intensive systems. Syst. Eng., 11(3), 221–234. https://
doi.org/10.1002/sys.v11:3

7

gineering effort and the cost and schedule success as
shown in Figures 1 and 2.

In a more general survey [Honour, 2004b], anecdotal
evidence from seven separate research efforts provided
the following conclusions:

• Better technical leadership correlates to program
success.

• Better/more systems engineering correlates to
shorter schedules by 40% or more, even in the
face of greater complexity.

• Better/more systems engineering correlates to
lower development costs, by 30% or more.

• Optimum level of systems engineering is about
15% of a total development program.

• Programs typically operate at about 6% systems
engineering.

(See Honour [2004b] for the list of references.)
Such heuristics are helpful, but fall short of the kind

of information needed by a manager making budget
decisions. Systems engineering needs definitive infor-
mation about the levels and kinds of tasks that matter to
the results of a project.

Figure 2. Schedule overrun as a function of SE effort. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

Figure 1. Cost overrun as a function of SE effort. [Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

 ROI: SOME QUANTITATIVE RESULTS FOR SOFTWARE-INTENSIVE SYSTEMS 3

Systems Engineering DOI 10.1002/sys

Example #3: Object-oriented programming
• Object-oriented programming is an exceptionally bad idea which could

only have originated in California

(c) Edgar Dijkstra

• OOP has many conceptual and practical issues, but heavy wide speared.

Partridge, C (1996). Business Objects: Re-Engineering for Re-Use, Butterworth Heinemann, 1996

• We don’t have the benefits of OOP over procedural programming.

Potok, T. E., Vouk, M., & Rindos, A. (1999). Productivity analysis of object‐oriented software

developed in a commercial environment. Software: Practice and Experience, 29(10), 833-847.

• Current trends in programming languages:

• add functional style features;

• reducing mutable state;

• avoid inheritance.

C++, Java, Go, Rust

• OOP is hard to use properly.

Sierra, Kathy, and Bert Bates. Head First Java: A Brain-Friendly Guide. O'Reilly Media, Inc., 2005.

Fowler, M. Refactoring: improving the design of existing code. Addison-Wesley, 2018.

8

Example #4: Design Real-Time ASIP
with Complex Multi-Level Organisation

NITTA project is a hard real-time ASIP with the
hybrid No Instruction Set Computing - Transport
Triggered Architecture (NISC-TTA) architecture. A
target system includes:

• a synthesizable HDL project with specialized

processor units (from the standard library and/or
user-defined), interconnect infrastructure and
distributed control units;

• a nano-coded software, which defines system
behavior according to an application model/
algorithm and, if it applies, specification of system
interaction protocol.

Synthesis method based on the transport-oriented
model of the target processor, which can represent
all possible system behaviors for CAD.

9

D
es

ig
n

flo
w

Sy
nt

he
si

s
m

et
ho

d
ar

ch
ite

ct
ur

e

RTL generation

Logic synthesis

Microarchitecture
generation

Processor units
library

Target system

Multilevel
computational

process scheduling

nano-coded software
generation

Application algorithm

Problems of Architectural Design Tools Comparing
• Low formalization of design space of problem. Different

tasks required different questions, viewpoints, and
granularity level.

• Low formalization of compared tools. Usually, a common
ground for comparing different tools is not allowed.

• Dependency between tool selection and consequences
(after architectural design and implementation). The human
factor.

• Problems of experimental evaluation:

• Task selection for an experiment.

• Experiment organization.

• High influence of the human factor.

• Existed industrial experience usually not accessible.

10

ISO/IEC 15288:2002(E)

© ISO/IEC 2002 – All rights reserved 53

Air traffic
control system

Air Transport System

Fuel
distribution

system

Airport
system

Ticketing
system

Ground

Transportation

System

Maritime

Transport

System

Aircraft System
Airframe
system

Propulsion
system

Air Crew

Life support
system

Flight control
system

Navigation
system

Global positioning
receiver system

Display
systemNavigation

System

Figure D.1 —Typical system view of an aircraft in its environment of use

Humans contribute to the performance and characteristics of many systems for numerous reasons, e.g. their
special skills, the need for flexibility, for legal reasons. Whether they are users or operators, humans are highly
complex, with behaviour that is frequently difficult to predict, and they need protection from harm. This requires the
system life cycle processes to address human element factors in the areas of: human factors engineering, system
safety, health hazard assessment, manpower, personnel and training. These issues are addressed by particular
activities and iteration in the life cycle, and are described in more detail in ISO 13407 and ISO/TR 18529.

D.1.3 System Structure

The system life cycle processes in this International Standard are described in relation to a system, see Figure D.2,
that is composed of a set of interacting system elements, each of which can be implemented to fulfil its respective
specified requirements. Responsibility for the implementation of any system element may therefore be delegated to
another party through an agreement.

COPYRIGHT 2003; International Organization for Standardization

Document provided by IHS Licensee=research isntitute of sci & tech -
Korea/5922932100, User=, 04/03/2003 01:07:15 MST Questions or comments about
this message: please call the Document Policy Management Group at

--`,`,,,`,`,````,,,```,`,``,,`,-`-`,,`,,`,`,,`---

RDS filters - Aspects

Product aspect

Location aspect
Function aspect

IS
O

 8
13

46

IS
O

 1
52

88

Comparative analysis based on criteria with
partially ordered estimates

Example: comparing architectural styles for design
and documenting multi-level embedded systems.

Method steps:

1. Definition of criteria with partially ordered

estimates. Criteria can be objective or
subjective and should be represented as axis
on radial diagrams.

2. Evaluation of compared objects. Estimate
doesn't need to be normalized for single or
multiple criteria, all that needed is order and
equality relationship.

3. Reduction of the number of compared objects
by removing duplicates and poor options.

4. Comparative analysis. Finding proper use-
cases for available tradeoffs or challenges for
creating new tools.

11

Step #1

Step #2
Step #3

Step #4 on the next slide

Conclusion:
• Some of the existed examples of architectural design

tools comparing reviewed.

• Problems of architectural design tools comparing are
analyzed.

• Proposed the method of comparative analysis of
architectural design tools based on criteria with
partially ordered estimates with the following
properties:

• the analytical method based on explicit and

traceable expert estimates;

• support of "black-box" and "white-box" analyzing;

• method oriented to highlight differences, not to

obtain the single best solution;

• method provides the means for interpreting the

results in different application cases.

12

Design space
coverage

Abstractions
compliance

Redundancy

ComplexityReconfiguration
representation

Representation
of method.

aspect

Platform
features

representation

Domain diagrams Deployment style

AADL Layer diagrams
Actualization graph Model-Process-Computer

Step #4

aleksandr.penskoi@gmail.com

Thank you!

13

